

Ocellaris

Ocellaris is a work in progress to make a mass conserving DG FEM solver for sharp interface
multiphase free surface flows. The current goal of the project is to simulate water entry and
exit of objects in ocean waves with accurate capturing of the force on the object and the
behaviour of the free surface.

Ocellaris is implemented in Python and C++ with FEniCS [https://fenicsproject.org/] as the backend for the mesh and
finite element assembly. PETSc [https://www.mcs.anl.gov/petsc/] is used for solving the resulting linear systems.

Quick start

	Ocellaris

	Installation and running

	First steps

	Documentation

	Development

	Copyright and license

Ocellaris is named after the Amphiprion Ocellaris [https://en.wikipedia.org/wiki/Ocellaris_clownfish]
clownfish and is written as part of a PhD project at the University of Oslo.

[image: Picture of an Ocellaris clownfish in a triangulated style]

Installation and running

Ocellaris requires a full installation of FEniCS [https://fenicsproject.org/] with the PETSc linear algebra backend. You can
install the dependecies yourself (you need at least dolfin, h5py, matplotlib and PyYAML), but the
easiest way by far is to use a preconfigured Singularity or Docker container. More information
on these and installation in general can be found in the user guide [https://trlandet.bitbucket.io/ocellaris/user_guide/user_guide.html].

When Ocellaris is installed you can run the solver with an Ocellaris input file:

ocellaris INPUTFILE.INP

Example input files can be found in the demos/ sub-directory of the Ocellaris source code and
a description of the Ocellaris input file format is given in the user guide [https://trlandet.bitbucket.io/ocellaris/user_guide/user_guide.html].

First steps

To test the code there are some demo input files in the demos/ directory. Complete input files along
with driver scripts are provided for several of the standard benchmark cases like Kovasznay flow and the
Taylor-Green vortex in the cases/ directory. More information can be found in the documentation which
also contains a description of the input file format.

Please feel free to test Ocellaris, but please keep in mind:

	Ocellaris is in a state of constant development

	Ocellaris supports Python 3 only

	Tested with FEniCS 2018.1. Earlier versions will NOT work, later version may possibly work.

	This is an ongoing research project, do not expect results to be correct without proper validation!

Documentation

	User guide
	Installing Ocellaris

	Running Ocellaris

	Ocellaris input file description

	Demos

	Ocellaris Inspector

	Utility scripts

	Programmers guide
	Simulation classes

	Scripting and interactive console

	A brief introduction

	License of Ocellaris
	The License

Development

Ocellaris is developed in Python and C++ on Bitbucket [https://bitbucket.org/trlandet/ocellaris] by use
of the Git version control system. If you are reading this on github, please be aware that you are seeing a
mirror that could potentially be months out of date. The github mirror is only updated sporadically—to trigger
new Singularity Hub container builds. All pull requests and issues should go to the Bitbucket repository.

Ocellaris is automatically tested on CircleCI [https://circleci.com/bb/trlandet/ocellaris/tree/master]
and the current CI build status is [image: circleci_status] [https://circleci.com/bb/trlandet/ocellaris/tree/master].

Copyright and license

Ocellaris is copyright Tormod Landet, 2015-2017. Ocellaris is licensed under the Apache 2.0 license, a
permissive free software license compatible with version 3 of the GNU GPL. See License of Ocellaris [https://trlandet.bitbucket.io/ocellaris/license.html] for
the details.

User guide

The Ocellaris user guide gives an introduction to installing, configuring and
running Ocellaris.

There are many possible simulations that can be correctly set up, but Ocellaris
will fail to give the physically correct answer. You must validate the code and
the configuration (input file) for your own purposes before trusting the results.

	Installing Ocellaris
	Installation using containers

	Installation using pip

	Running Ocellaris
	Running a simulation

	Restart files

	Graphical user interface

	Controlling a running simulation

	Ocellaris input file description
	File format
	Common errors

	Header
	Templates

	User constants and code

	Physical properties
	Single phase properties

	VOF two phase properties

	Variable density properties

	Mesh
	Simple geometries

	Mesh file formats

	Moving the mesh

	Boundary conditions
	Available options

	Selecting regions by code

	Selecting regions from XML input

	Coded boundary conditions

	Initial conditions

	Timestepping

	Output control

	Linear solvers
	PETSC KSP solver setup (use_ksp = yes)

	FEniCS DOLFIN solver setup (use_ksp = no)

	Navier-Stokes solvers
	IPCS-A

	IPCS-D

	SIMPLE

	PISO

	PIMPLE

	Coupled

	Analytical

	Multi phase solver

	Convection

	Probes

	User code / hooks

	Demos
	Flow around a clownfish

	Dam break

	Taylor-Green

	Wave Tank

	Ocellaris Inspector
	Getting started

	Opening files

	Scripting

	Utility scripts
	orun.py - Run Ocellaris on a HPC with automatic restarts

	merge_xdmf_timeseries.py - join multiple XDMF files into a single time history

	Others

Installing Ocellaris

Ocellaris is a Python package and it contains no modules that must be compiled
before running. Some internal modules will be compiled on the first program
startup by use of the FEniCS DOLFIN JIT compiler. This can take some time.
Subsequent runs of Ocellaris will use the precompiled modules.

Contents

	Installation using containers

	Installation using pip

Installation using containers

The easiest way to install Ocellaris is by use of a Docker [https://www.docker.com/] or Singularity [http://singularity.lbl.gov/]
container. Ocellaris is CI [https://circleci.com/bb/trlandet/ocellaris/tree/master] tested using the Docker container described in
the containers/ subdirectory of the Ocellaris source code. The test
procedures (Linux shell commands) describe the exact commands used to
install and run Ocellaris tests and they are a good place to start, see the
config.yml [https://bitbucket.org/trlandet/ocellaris/src/master/.circleci/config.yml] file in the .circleci/ subdirectory of the Ocellaris source
code for the details.

Ocellaris is developed (mostly) using Singularity [http://singularity.lbl.gov/] containers. You can either
convert the Docker CI container or use the one described in the Singularity
file inside the containers/ subdirectory of the Ocellaris source code.
To create a Singularity image from the file “Singularity” run:

cd path/to/Ocellaris_source
cd containers
singularity build ocellaris.img Singularity

You can now run Ocellaris from inside the newly created Singularity container:

singularity run ocellaris.img INPUTFILE.INP

The Singularity image is based on the Docker image that is used by the Ocellaris
automated testing environment, see config.yml [https://bitbucket.org/trlandet/ocellaris/src/master/.circleci/config.yml] for up to date details about
which Docker image is used. You can use this Docker image to run Ocellaris as
well, but you will then have to install Ocellaris yourself inside the container
using the pip3 command shown below.

Installation using pip

Before running Ocellaris you must ensure that the ocellaris Python package
is on the Python search path. This is most easily done by running:

pip3 install .

in the root directory of the source code. If the package is installed via
pip then the ocellaris command will be available, otherwise you can
add the source directory to the Python module search path and add an alias:

alias ocellaris="python3 -m ocellaris"

Ocellaris depends on an installation of FEniCS, compiled with support for
PETSc, and some additional Python packages like PyYAML and h5py. Ocellaris will
inform you about any missing packages when you run it for the first time.

Eventually Ocellaris will be available on PYPI for installation through the
pip, command but currently you must download the package manually from
the Ocellaris Bitbucket git repository [https://bitbucket.org/trlandet/ocellaris/src] before you can install it. You
can get the source code by:

git clone https://bitbucket.org/trlandet/ocellaris.git
cd ocellaris
pip3 install .

FEniCS, which Ocellaris is built on top of, is not currently pip-installable
(Nov 2017) so it can be slightly hard to install all prerequisites. The
recommended way which should always work is to use the same installation as
on the automated test system—running in a container—or using the same
installation procedure as used in the containers, see the container section
above for more info.

Running Ocellaris

Contents

	Running a simulation

	Restart files

	Graphical user interface

	Controlling a running simulation

Running a simulation

Ocellaris is typically run from the command line with the name of an input file
as the first argument:

ocellaris taylor-green.inp

You can optionally override parameters given on the input file:

ocellaris taylor-green.inp \
 --set-input time/dt=0.1 \
 --set-input 'solver/velocity_function_space="CG"'

You can see a summary of the command line options by running:

ocellaris --help

Ocellaris will normally create a log file with the information that is also
shown on screen. This will contain a listing of the input after modification
by the --set-input command line flag so that you can be sure to know
exactly what you did run when you look back on an old simulation.

Restart files

Ocellaris will by default save a restart file at the end of each simulation,
named something like SIMNAME_endpoint_00000XYZ.h5. You can also configure
Ocellaris to write restart files at given intervals or supply a user code that
writes a restart file when given criteria are met. The restart file contains
the input file that was used along with a very detailed log and all active
fields (velocity, pressure, density etc).

If you need to restart from the end of a simulation, for example to run a bit
further in time in case you set tmax a bit too short you can easily do this
by:

ocellaris RESTART_FILE.h5 --set-input time/tmax=30.0

You will probably want to use --set-input since it is inconvenient (but
certainly doable if you really want) to change the input description inside
the restart file.

If you want you can inspect the contents of a restart file, which is stored on
HDF5 format, by use of the graphical program HDFView [https://www.hdfgroup.org/downloads/hdfview/], or command line
applications like h5ls and friends, see HDF5 [https://www.hdfgroup.org] for more info. This is a
relatively easy way to find out the exact input file that was used, read the
detailed log etc. There are no known programs that can plot the fields inside a
FEniCS DOLFIN HDF5 restart file (which is what Ocellaris uses).

Graphical user interface

Preprocessing:
There are many programs that can generate simplical 2D or 3D meshes that are
compatible with Ocellaris. All mesh formats supported by meshio [https://github.com/nschloe/meshio], can be read
by Ocellaris. A rather good free graphical user interface for mesh generation is
gmsh [http://gmsh.info]. The latest version (>3) has CAD capabilities and is used for several of
the Ocellaris demos.

Postprocessing:
Ocellaris can save results in XDMF [http://www.xdmf.org] format. There are several programs that
can postprocess such files. Paraview [https://www.paraview.org] is one good option.
A custom post-processor, Ocellaris Inspector, also exist. It can be used
to plot residuals and other time series produced by the simulator. The
inspector is usefull when Ocellaris is running (for plotting log files) and
after finishing (plotting restart h5 files). All numbers printed on the screen
and in the log file when Ocellaris is running should be accessible in
the Ocellaris Inspector program.

Controlling a running simulation

If you run Ocellaris directly from a command line prompt on one CPU (very
unlikely) then you can type in the below commands directly. This is the reason
for the short command lines, to enable quick and dirty use during debugging of
the Ocellaris code on small toy examples.

If you are running Ocellaris in a cluster queue system and/or using MPI and
hence have no access to the interactive console of the root process you can give
commands in a command file. If your output prefix is such that the log file is
called mysim.log then the name of the command file is mysim.COMMANDS.
This file will not be created, you must make a new one every time. Ocellaris
will read the file to check for commands and then DELETE the file to avoid
running commands multiple times. The contained commands are processed at the end
of the current time step. Each command should be on a separate line in the file.

	
d

	Start a debug console - only use this when running interactively on 1 CPU!

	
f

	Flush open files to disk (this is done periodically, but can be forced)

	
p

	Plot field variables (legacy, avoid this).

	
r

	Write restart file

	
s

	Stop the simulation, changes input value time/tmax to the current time.

	
t

	Show timings (shows the table normally shown at the end of a simulation)

	
i a/b/c = 12.3

	Change the input file variable a/b/b to the value 12.3. The value
will be evaluated as a Python expression.

	
w FORMAT

	Write current simulation state to 3D visuamization output file of the given
FORMAT (must be one of vtk or xdmf).

	
prof N

	Run the Python profiler for the next N time steps and then print the
resulting profiling information. This is good for figuring out which routine
is tanking longer than expected if the timing information from the t
command is not sufficient to understand the problem. Normally the PETSc
Krylov solvers should take the majority of the time, but if not some
profiling may be necessary. Note: this profiles the Python code only, the
C++ code will not show any details on which part is taking time.

Example: the following COMMAND file will save a restart file, plot fields to
XDMF and then stop the simulation:

r
w xdmf
s

You can run something like this to easily create the COMMAND file:

echo r > mysim.COMMANDS
echo "w xdmf" >> mysim.COMMANDS
echo s >> mysim.COMMANDS

Ocellaris input file description

Contents

	File format

	Common errors

	Header

	Templates

	User constants and code

	Physical properties

	Single phase properties

	VOF two phase properties

	Variable density properties

	Mesh

	Simple geometries

	Mesh file formats

	Moving the mesh

	Boundary conditions

	Available options

	Selecting regions by code

	Selecting regions from XML input

	Coded boundary conditions

	Initial conditions

	Timestepping

	Output control

	Linear solvers

	PETSC KSP solver setup (use_ksp = yes)

	FEniCS DOLFIN solver setup (use_ksp = no)

	Navier-Stokes solvers

	IPCS-A

	IPCS-D

	SIMPLE

	PISO

	PIMPLE

	Coupled

	Analytical

	Multi phase solver

	Convection

	Probes

	User code / hooks

File format

Ocellaris uses the YAML format for input files. The input file is divided
into separate sections dealing with geometry, boundary conditions, solver
parameters etc. The different sections are described below. Multiple demos
are provided along with Ocellaris and it is recommended to start with one
of the demo input files and use the below documentation as an aid to change
the demo input file into one that is describing your specific simulation.

Note that since JSON is a valid subset of YAML, you can also write the input
file in JSON format. JSON has no simple support for multi-line strings and
comments, so YAML is the format used by the Ocellaris demos and also in the
descriptions below.

Common errors

Some errors that are easy to make when writing a YAML input file:

	Boleans in YAML are written all lower case (true, false) unlike
in Python where the first letter is upper case (True, False). It
can be easier to use the alternatives on or off so this
confusion is avoided.

	The value 5e-3 is a string in YAML while 5.0e-3 is a float.

	Indentation is significant, just like in Python

	Misspellings are not checked!

Header

The input file must start with the following header:

ocellaris:
 type: input
 version: 1.0

You can optionally specify some metadata if you feel like it. This is not
required, but can be useful for explainations and later references.

metadata:
 author: Tormod Landet
 date: 2015-02-13
 description: |
 Free form text description of the input
 It can be quite usefull to have some text to
 describe the purpose of the simulation etc for
 future reference

Here you also see the syntax for multi-line strings in YAML.

Templates

You can specify a list of base input files that will be read first and used
as a basis for the input. Any values given in an input file will then extend
the template basis. This support is limited to key-value mappings. It is not
possible to replace parts of a list. Changing a list must be done by changing
the whole list in the derived input file.

Example base input file, base.inp:

ocellaris:
 type: input
 version: 1.0

user_code:
 constants:
 A: 2

some_section:
 D: py$ A/B

The derived input file can use values defined in the base and extend it with
further data—you may need to read the User constants and code section to
fully understand this example:

ocellaris:
 type: input
 version: 1.0
 bases:
 - base.inp

user_code:
 constants:
 B: 4

some_section:
 C: py$ A*B

Ocellaris will interpret the input as:

ocellaris:
 type: input
 version: 1.0

some_section:
 D: 0.5
 C: 8

User constants and code

You can specify constants that can be used in subsequent sections to make
the input file easily configurable. You can also specify some code that
will run right after the input file has been read, before any of the
simulation setup such as loading the mesh has been done. You can even
change the input by accessing the simulation.input object since no
parts of Ocellaris has accessed the input yet.

user_code:
 constants:
 L: 200 # channel length
 theta: 30 # angle
 code: |
 import subprocess
 subprocess.call(['command', 'to', 'generate', 'mesh'])

Example of using the constants in later sections of the input file:

some:
 section:
 param1: 4.3
 param2: py$ 2.3 * L * sin(theta)
 cpp_code: 'x[0] + L * sin(theta)'

Any value (except inside the user_code/constants block) can be given as
a string starting with py$. Ocellaris will then execute the given Python
code to produce the value to be used in Ocellaris just as if you had written
the value directly into the input file. The Python code you give can evaluate
to a list, string, number…

Code given as strings in the input file, either Python or C++ can also use
the constants as can be seen in the example. These are typically expressions
defining initial or boundary values. You can even combine these functions:

some-section:
 cpp_code: py$ 'x[0] + L * sin(theta)'.replace('theta', 'theta + L')

This can be handy if you give the C++ code to compute the value of a field
as a user constant string, and then you can use python code to replace the
variable t in the string with (t - dt) in order to specify the two
initial conditions, both at t=0 and t=0-dt without having to repeat
the C++ code. This can, e.g., be used to describe a Taylor-Green vortex in
such a way that the time stepping can be second order from the first time
step (normally the first time setp is first order accurate since only one
initial condition is specified:

user_code:
 constants:
 u0a: '-sin(pi*x[1])*cos(pi*x[0])*exp(-2*pi*pi*nu*t)'
 u1a: ' sin(pi*x[0])*cos(pi*x[1])*exp(-2*pi*pi*nu*t)'

initial_conditions:
 up0:
 cpp_code: py$ u0a
 up1:
 cpp_code: py$ u1a
 upp0:
 cpp_code: py$ u0a.replace('*t)', '*(t - dt))')
 upp1:
 cpp_code: py$ u1a.replace('*t)', '*(t - dt))')

Physical properties

You will need to specify some physical constants. A simple example:

physical_properties:
 g: [0, 0, 0]
 nu: 0.001
 rho: 1.0

	
g

	The acceleration of gravity given as a list of numbers. The length of the
list must match the number of spatial directions, e.g. 2 or 3.
Use [0, -9.81] in 2D and [0, 0, -9.81] in 3D for “standard” gravity.

Single phase properties

	
nu

	The kinematic viscosity

	
rho

	The density of the fluid, defaults to 1.0.

VOF two phase properties

	
nu0, rho0

	The kinematic viscosity and density of fluid 0

	
nu1, rho1

	The kinematic viscosity and density of fluid 1

For a water/air simulation fluid 0 is typically water and corresponds to
VOF colour function value 1.0 while fluid 1 is typically air and
corresponds to VOF colour function value 0.0.

Variable density properties

	
nu

	The kinematic viscosity of both fluids (single value)

	
rho_min, rho_max

	The range of allowable densities. Give one number for each of these settings.

Mesh

You can specify simple geometries using FEniCS DOLFIN built in mesh generators,
and also load a mesh from file. For realistic cases using something like gmsh
to generate meshes is recommended. The meshio [https://github.com/nschloe/meshio] program can be used to convert
between different mesh file formats and also loading these formats directly,
see below.

Simple geometries

Example: 2D rectangle

mesh:
 type: Rectangle
 Nx: 64
 Ny: 64
 diagonal: left/right # defaults to 'right'
 startx: 0 # defaults to 0
 endx: 2 # defaults to 1
 # you can also give starty and endy

Example: 3D box

mesh:
 type: Box
 Nx: 64
 Ny: 64
 Nz: 15
 startx: 0 # defaults to 0
 endx: 2 # defaults to 1
 # you can also give starty and endy, startz and endz

Example: 2D disc

mesh:
 type: UnitDisc
 N: 20
 degree: 1 # defaults to 1 (degree of mesh elements)

Mesh file formats

Example: using meshio [https://github.com/nschloe/meshio] to load all its supported formats (RECOMMENDED)

mesh:
 type: meshio
 mesh_file: mesh.msh
 meshio_type: gmsh

The supported formats (as of November 2018) can be found in this list [https://github.com/nschloe/meshio/blob/8289814be4f714b6d6000e173ab6697d1f35655f/meshio/helpers.py#L130]
in the meshio source on github.

Example: legacy DOLFIN XML format

mesh:
 type: XML
 mesh_file: mesh.xml
 facet_region_file: regions.xml # not required

Ocellaris will look for the xml files first as absolute paths, then as paths
relative to the current working directory and last as paths relative to the
directory of the input file. If it cannot find the file in any of these
places you will get an error message and Ocellaris will quit.

A sample mesh xml file and facet marker file is included in the demo/files
directory. The mesh ocellaris_mesh.xml.gz and the facet regions
ocellaris_facet_regions.xml.gz. You can load these files without unzipping
them. The flow around Ocellaris demo shows how it is done.

Example: XDMF format

mesh:
 type: XDMF
 mesh_file: mesh.xdmf

Example: Ocellaris HDF5 restart file format

mesh:
 type: HDF5
 mesh_file: ocellaris_savepoint000010.h5

This will only load the mesh and (possibly) facet regions. You can also start
the simulation from a restart file instead of an input file. Then the mesh and
the function values from that save point are used, allowing you to restart the
simulation more or less like it was never stopped.

Moving the mesh

Ocellaris can move the mesh right after it has been created or read from file.
To move the mesh in order to refine, skew, scale, rotate or translate it you
must specify a C++ description of the mesh displacement from the initial
position (which was specified in the input file or in the loaded mesh file).

An example is the following 140 meter long 2D wave tank which is 10 m high. To
refine the mesh in the y-direction such that it is finest around x[1] = 7
meters—where the free surface is to be located—a function is specified which
is zero on the boundaries (to avoid changing the domain size) and non-zero in
the interior in order to move the nodes closer to the free surface. No refinement
is performed in the x-direction (x[0]).

mesh:
 type: Rectangle
 Nx: 140
 Ny: 20
 endx: 140
 endy: 20
 move: ['0', '0.0297619048*pow(x[1], 3) - 0.520833333*pow(x[1], 2) + 2.23214286*x[1] + 3.55271368e-15']

In order to develop and check the mesh refinement function it can be beneficial
to generate and plot it, e.g., using matplotlib in jupyter or using similar
interactive tools. The above refinement was developed using polynomial fitting
in numpy:

from matplotlib import pyplot
import numpy

Find a polynomial that refines the mesh
y_target = [0, 4, 7.5, 10]
dy_target = [0, 2.5, 0, 0] # zero at the boundary
P = numpy.polyfit(y_target, dy_target, 3)

Realise the polynomial
y = numpy.linspace(0, 10, 20)
dy = numpy.polyval(P, y)

Plot the results
for ypos in (y + dy):
 pyplot.plot([0, 1], [ypos, ypos], '-k', lw=1)'
pyplot.axhline(7, c='b', ls=':')
pyplot.axhline(6, c='b', ls=':', lw=1)
pyplot.axhline(8, c='b', ls=':', lw=1)

For more complicated meshes it is recommended to perform mesh grading and other
mesh operation in an external mesh generator such as gmsh.
There is also some (not much used, hence possibly buggy) support for ALE where
the mesh moves every timestep, but that is not covered by the mesh section
of the input file.

Boundary conditions

You need a list of boundary conditions for your problem. For each region of the
boundary you first need to tell Ocellaris how to find this region and then the
boundary conditions to apply to each of the variables (velocity and pressure for
a single phase simulation).

You can select constant Dirichlet boundary conditions (ConstantValue) or
constant Neumann conditions (ConstantGradient). You can also have coded
boundary conditions where you give a source code snippet that is executed to
calculate the boundary condition value, either in Python (type CodedValue)
or in C++ (type CppCodedValue).

How to mark different areas of the boundary is explained below. For the lid
driven cavity the boundary conditions are as follows:

boundary_conditions:
- name: walls
 selector: code
 inside_code: on_boundary
 u:
 type: ConstantValue
 value: [0, 0]
 p:
 type: ConstantGradient
 value: 0
- name: lid
 selector: code
 inside_code: on_boundary and x[1] >= 1.0 - 1e-8
 u:
 type: ConstantValue
 value: [1, 0]
 p:
 type: ConstantGradient
 value: 0

Note that the - in front of the name: ... lines marks the start of a
list item. The boundary conditions should be given as a list of boundary
regions. Each region specifies boundary conditions for all variables on the
selected boundary.

The boundary conditions for the velocity components can also be broken up and
written per component. This allows you to apply different boundary conditions
types for each component. In this case it can be written (for the lid):

u0:
 type: ConstantValue
 value: 1
u1:
 type: ConstantValue
 value: 0

Available options

	key

	Default value

	Description

	boundary_conditions/[i]/name

	required input

	The name of the region. For more helpful error messages etc.

	boundary_conditions/[i]/selector

	required input

	How the region is selected. Supported methods are code and mesh_facet_region.

	boundary_conditions/[i]/inside_code

	required when the selector is code

	Python code to mark facets as inside the region or not

	boundary_conditions/[i]/mesh_facet_regions

	required when the selector is mesh_facet_region

	List of identificator numbers of the facet regions from the mesh. See below.

	boundary_conditions/[i]/map_code

	required when using periodic boundary conditions

	Code for mappinc coordinates when using periodic boundary conditions. See below.

	boundary_conditions/[i]/var_name

	
	Boundary conditions for var_name. See below.

The boundary condition for each variable is given in a sub-dictionary that has
the following options:

	key

	Default value

	Description

	../var_name/type

	required input

	What type of BC to apply. Currently the following are available: ConstantValue, ConstantGradient, CodedValue and CppCodedValue

	../var_name/value

	required when using ConstantXxxxx

	The value to apply. Either a scalar or a list of scalars.

	../var_name/code

	required when using CodedXxxx

	Python code to calculate the value. Must be a multiline string that assigns to the value[i] variable (see below)

	../var_name/cpp_code

	required when using CppCodedXxxx

	C++ expression to calculate the value. Must evaluate to the requested value.

Selecting regions by code

You can select regions of the boundary by code in the same format as in FEniCS.
Ocellaris will run the Python code provided in the inside_code input key in
a statement equivalent to:

def boundary(x, on_boundary):
 return YOUR_REGION_CODE

if you give a single line expression, or

def boundary(x, on_boundary):
 YOUR_REGION_CODE
 return inside

if you give a multi line expression. In this case you need to assign a boolean
value to the name inside.

How the inside_code works is that any facet where your code evaluates to
True will be marked. As you can se above it is possible to mark everything
as is done for the walls and then overwrite this mark for parts of the boundary
as is done for the lid. The above will have walls everywhere below y=1 and lid
on y≥1. The FEniCS / dolfin syntax is used so x[0] is the x-component and
x[1] is the y-component.

Selecting regions from XML input

If you load the mesh along with a facet region file you can select boundary
regions by referencing their number given in the facet region file. You can
select one or more mesh facet region per Ocellaris boundary region. In the
demo calculating flow around the 2D outline of an Ocellaris clownfish the
selection of the top and bottom wall is done as follows. Here 2 and 4 are the
numbers given to the top and bottom wall respectively in the Gmsh preprocessor
using Physical Line(2) = {...}; Physical Line(4) = {...};:

boundary_conditions:
- name: Top and bottom
 selector: mesh_facet_region
 mesh_facet_regions: [2, 4]
 u1:
 type: ConstantValue
 value: 0
 p:
 type: ConstantGradient
 value: 0

The above code applies a free-slip boundary condition on these two horisontal
walls. No boundary condition is applied in the tangential, u0, direction.
Here it was necessary to split the velocity boundary condition into per
component boundary conditions.

Coded boundary conditions

An example of coded boundary conditions can be seen in the the following which
applies the analytical Taylor-Green vortex solution as Dirichlet conditions:

boundary_conditions:
- name: walls
 selector: code
 inside_code: on_boundary
 u:
 type: CodedValue
 code:
 - value[0] = -sin(pi*x[1]) * cos(pi*x[0]) * exp(-2*pi*pi*nu*t)
 - value[0] = sin(pi*x[0]) * cos(pi*x[1]) * exp(-2*pi*pi*nu*t)
 p:
 type: CodedValue
 code: value[0] = -(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4.*pi*pi*nu*t)/4

Notice that there is a list of two code blocks for the velocity. Both are
evaluated as scalar fields and must assign to the zeroth component of the
value[] array that is provided by FEniCS in order to set the Dirichlet
value at the boundary.

Boundary conditions can also be written in C++. If you write the boundary
conditions in C++ instead of Python it will normally be significantly faster.

The same example as above would be:

boundary_conditions:
- name: walls
 selector: code
 inside_code: on_boundary
 u:
 type: CppCodedValue
 cpp_code:
 - -sin(pi*x[1]) * cos(pi*x[0]) * exp(-2*pi*pi*nu*t)
 - sin(pi*x[0]) * cos(pi*x[1]) * exp(-2*pi*pi*nu*t)
 p:
 type: CppCodedValue
 cpp_code: -(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4.*pi*pi*nu*t)/4

Note that there is no assignment to the value[] array. All math
functions from <cmath> are available as well as scalars like the time “t”,
the timestep “dt”, time index “it” and number of geometrical dimensions “ndim”.
For single phase simulations “nu” and “rho” are also available.

Initial conditions

In the lid driven cavity test case both the velocity and the pressure fields
start from zero, so no initial values need to be given. The following is an
example of how to specify initial values for the Taylor-Green vortex on a 2D
square with side lengths equal to 2.0:

initial_conditions:
 up0:
 cpp_code: -sin(pi*x[1])*cos(pi*x[0])*exp(-2*pi*pi*nu*t)
 up1:
 cpp_code: sin(pi*x[0])*cos(pi*x[1])*exp(-2*pi*pi*nu*t)
 p:
 cpp_code: -(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4*pi*pi*nu*t)/4

	key

	Default value

	Description

	initial_conditions/var_name/cpp_code

	required input

	C++ code that gives the value of the field at each point. Variables rho, nu and t are available

Timestepping

This section sets the end time and time step. Currently only fixed time step is
available, though the time step can be altered in user coding at the expense of
slight errors in the treatment of the convecting velocity at the two time steps
following the change in time step:

time:
 dt: 0.01
 tmax: 60.0

Example user code that changes the time step. See details under hooks below:

hooks:
 pre_timestep:
 - name: decrease time step
 code: |
 if t > 10:
 simulation.input['time']['dt'] = 0.005

Output control

All the following parameters have sensible defaults and can be left out. The
output prefix can be useful to control in which directory the output files end
up. The final file name of all output files will be
output_prefix + file name.

output:
 prefix: lid_driven_cavity_flow
 log_name: .log
 dolfin_log_level: warning
 ocellaris_log_level: info

	key

	Default value

	Description

	…

	required input

	FIXME: finish this table

Linear solvers

All equation systems that require global solves, like the velocity, pressure
and potentially multi phase models, will have their own optional definition of
the linear solver. These can be described in two ways, the simple FEniCS DOLFIN
based setup where some limited configuration is possible, or the full PETSc KSP
setup where all of the PETSc options are configurable plus a few options added
by Ocellaris.

It is recommended to use the KSP setup. It is the default, it is more powerfull
and it can do everything supported by the FEniCS DOLFIN setup. The DOLFIN setup
is kept for comparison and to be able to test the exact same setup used by
“normal” FEniCS codes.

PETSC KSP solver setup (use_ksp = yes)

This linear solver setup is used by most linear solvers inside Ocellaris. Most
solvers set reasonable defaults. Use these as starting points for your own
experimentations. The Ocellaris log file shows the setup which is used for the
different linear solvers in your simulation.

solver:
 u:
 use_ksp: yes
 petsc_ksp_type: gmres
 petsc_pc_type: asm
 petsc_ksp_initial_guess_nonzero: yes
 inner_iter_rtol: [1.0e-15, 1.0e-15, 1.0e-15]
 inner_iter_atol: [1.0e-15, 1.0e-15, 1.0e-15]
 inner_iter_max_it: [100, 100, 100]

	
use_ksp: yes

	Signal that we want to use the KSP solver setup (this is default in most
situations).

	
petsc_XXXX

	Any PETSc parameter. Examples: ksp_type sets the solver name and
pc_type sets the preconditioner name. Look at the PETSc documentation
for the full list of tunable parameters, or give petsc_help: 'ENABLED'
to get a dump of possible parameters (the program will exit after giving
the parameter listing).

	
inner_iter_control

	The number of iterations and tolerances in the Krylov solver can be set for
three categories of solves. The first X inner iterations (pressure
correction iterations in the Navier-Stokes solver), the last Y inner
iterations and the rest of the iterations (the middle number). The numbers
X and Y are set by inner_iter_control: [X, Y]. The default values are
X=Y=3.

	
inner_iter_rtol, inner_iter_atol, inner_iter_max_it

	The relative and absolute tolerances in the Krylov solver (default values
are typically rtol = 1.0e-10 and atol = 1.0e-15). The maximum
number of Krylov iterations is by default 100 for most solvers. If the
solution is not converged the procedure will just continue, it is not
always necessary to fully converge when applying an iterative solver, at
least not in the inner first iterations (see below note on iterations).

Note

Inner iterations refer to the main iterations inside each time step,
typically pressure correction iterations (implemented in code inside
Ocellaris). Krylov iterations refer to iterations inside the linear
equation solver (provided by PETSc). The Krylov iterations are nested
inside the inner iterations which are nested inside the time loop.

FEniCS DOLFIN solver setup (use_ksp = no)

solver:
 u:
 use_ksp: no
 solver: gmres
 preconditioner: additive_schwarz
 parameters:
 any_parameter_supported_by_dolfin: valid_value

	
use_ksp: no

	Signal that we want to use the simplified setup

	
solver, preconditioner

	The names of the preconditioner and linear solver. Any values (string)
supported by FEniCS DOLFIN are supported. The default values in FEniCS
are used if none are specified (bad idea for large systems)

	
parameters

	Any parameter keys and values supported by FEniCS DOLFIN. See the DOLFIN
documentation for these.

Navier-Stokes solvers

Some parameters are shared between all the available velocity-pressure solvers.
All the parameters in the following example have sensible defaults except for
the solver type which you must set. For the other parameters in the example
the values shown are the default values. The possible values for solver type
(IPCS-A, SIMPLE, PISO etc) are listed in the sections below with a brief
description.

solver:
 type: IPCS-A
 num_inner_iter: 10
 allowable_error_inner: 1.0e-10
 polynomial_degree_pressure: 1
 polynomial_degree_velocity: 2
 function_space_pressure: DG
 function_space_velocity: DG
 u:
 # see linear solver documentation above
 p:
 # see linear solver documentation above

The inner iterations (pressure correction iterations) will run a maximum of
num_inner_iter times for each time step, but the iterations will exit early
if the \(l^2\) error of the difference between the predicted and corrected
velocity field is less than the given value allowable_error_inner.

Some control parameters exist outside the common ones shown above, but none of
these are of the type that a normal user would probably need to change, so they
are only documented in the source code of the individual solvers.

The following parameters are relevant for under-relaxed solver implementations
(SIMPLE, PISO, PIMPLE):

	
relaxation_u, relaxation_p

	Relaxation factors. A value of 1.0 means no relaxation, 0.0 means no update
at all (pointless). A value of 0.5 means that the result is an even blend
of the computed value and the previous iteration value

	
relaxation_u_last_iter, relaxation_p_last_iter

	Some solvers will differentiate the last inner iteration from all other
iterations. These parameters default to 1.0 in order to perform a “propper”
update at the end of a time step with no relaxation applied.

IPCS-A

Incremental Pressure Correction Scheme on Algebraic form. This is an iterative
Chorin/Temam type pressure correction solver.

IPCS-D

Incremental Pressure Correction Scheme on Differential form. This is an
iterative Chorin/Temam type pressure correction solver where the pressure
correction Poisson equation is assembled from an elliptic operator and not
algebraicly from matrices. The divergence of the velocity field is hence not
very low and the method is not so strongly recommended for DG FEM, but it is
one of the most common solvers for the Navier-Stokes equations outside of DG
FEM and it has a smaller numerical stencil and may be faster than the IPCS-A
method.

SIMPLE

Semi-Implicit Method for Pressure-Linked Equations. The implementation of the
algorithm is based on Klein, Kummer, Keil & Oberlack (2015).

PISO

The pressure correction method by Issa (1986), Pressure-Implicit with Splitting
of Operators. PISO adds an additional correction step to the SIMPLE algorithm.

PIMPLE

A Navier-Stokes solver based on the PIMPLE algorithm as implemented in OpenFOAM
and partially described in the PhD thesis of Jasak (1996; the PISO loop only).

	
num_pressure_corr

	The number of PISO iterations for each PIMPLE loop (the number of PIMPLE
loops is controlled by the standard num_inner_iter parameter).

Coupled

Solves the velocity-pressure saddle point block-matrix equation system coupled.
Do not use this solver for large meshes. Even when using the multi-cpu
distributed multi frontal MUMPS or SuperLU_dist direct solvers there is a quite
small (perhaps around 1 million on a recent workstation?) limit to how many
degrees of freedom can be computed. For very small examples it may be faster
than using pressure-correction iterations and there is no resulting splitting
error which makes it great for testing and benchmarking the split solvers.

No block-system preconditioners are available in Ocellaris for the coupled
Navier-Stokes solver, so iterative linear solvers will either not converge or
perhaps “converge” to nonsensical solutions. Only use with direct solvers!

Analytical

Use the initial condition C++ code (possibly containing the time variable t
which will be updated for each time step) to define the velocity and pressure
for all time steps. This can be usefull for testing other parts of the
Ocellaris solution framework with a known Navier-Stokes solution.

Multi phase solver

If you are creating a two fluid simulation you will have to specify some
parameters of the multi-phase solver. For the lid driven cavity we can leave
the multi phase solver specification out of the input file. The default value
of this section is:

multiphase_solver:
 type: SinglePhase

When using the multi phase VOF solver by specifying type: BlendedAlgebraicVOF
the following parameters can be specified:

	key

	Default value

	Description

	multiphase_solver/function_space_colour

	DG

	CG for continuous Galerkin, DG for discontinuous Galerkin

	multiphase_solver/polynomial_degree_colour

	0

	The degree of the approximating polynomials

In addition you will have to specify a convection scheme for the VOF colour
function in order to keep the free surface sharp. For specifying the convection
scheme, see below.

Convection

Convecting fluxes have to be specified for all DG fields that are operated on
by a convection operator.

convection:
 u:
 convection_scheme: Upwind

	key

	Default value

	Description

	…

	required input

	FIXME: finish this table

FIXME: describe HRIC/ CICSAM etc

Probes

Line probes can be added to sample the solution at each time step or at regular
intervals. Ocellaris can also show a plot of the sampled probe values that it
will update while it is running so that you can visually inspect the solution.

probes:
- name: u-vel center
 type: LineProbe
 field: u0
 startpos: [0.5, 0]
 endpos: [0.5, 1]
 Npoints: 100
 file_name: _uprobe.txt
 show_interval: 1
 write_interval: 10
 target_name: Ghia et al
 target_abcissa: [1.0, 0.9766, 0.9688, 0.9609, 0.9531, 0.8516, 0.7344, 0.6172, 0.5,
 0.4531, 0.2813, 0.1719, 0.1016, 0.0703, 0.0625, 0.0547, 0.0]
 target_ordinate: [1, 0.65928, 0.57492, 0.51117, 0.46604, 0.33304, 0.18719, 0.05702, -0.0608,
 -0.10648, -0.27805, -0.38289, -0.2973, -0.2222, -0.20196, -0.18109, 0]

- name: v-vel center
 type: LineProbe
 field: u1
 startpos: [0, 0.5]
 endpos: [1, 0.5]
 Npoints: 100

 file_name: _vprobe.txt
 write_interval: 10

 target_abcissa: [1.0, 0.9688, 0.9609, 0.9531, 0.9453, 0.9063, 0.8594, 0.8047, 0.5,
 0.2344, 0.2266, 0.1563, 0.0938, 0.0781, 0.0703, 0.0625, 0.0]
 target_name: Ghia et al
 target_ordinate: [0, -0.21388, -0.27669, -0.33714, -0.39188, -0.5155, -0.42665, -0.31966,
 0.02526, 0.32235, 0.33075, 0.37095, 0.32627, 0.30353, 0.29012, 0.27485, 0.0]

	key

	Default value

	Description

	…

	required input

	FIXME: finish this table

User code / hooks

TODO: describe this. See example under timestepping above for now.

	key

	Default value

	Description

	…

	required input

	FIXME: finish this table

The example below shows that each hook gets it’s own dictionary hook_data
to store whatever it wants between calls. The example also shows how to read
the input file parameters in a hook that is defined in the same input file, and
how to perform output to file in a configurable manner:

- name: save colour function field
 enabled: yes
 code: |
 if not 'cf' in hook_data:
 prefix = simulation.input.get_value('output/prefix')
 hook_data['cf'] = File(prefix + '_c.pvd')
 if t > 1:
 hook_data['cf'] << (c, t)

Demos

The demo input files can be found in the Ocellaris repository [https://bitbucket.org/trlandet/ocellaris/src/master/demos/]. Geometry files
(meshes) can be found in the datafiles subdirectory of the linked demos
directory.

Flow around a clownfish

This demo shows how to create a simple Ocellaris 2D simulation. The gmsh
geometry file demos/datafiles/ocellaris.geo defines “physical regions” with
numeric IDs that can be referenced when defining boundary conditions in the
input file flow_around_ocellaris.inp.

[image: Streamlines of the flow around a 2D clownfish]
The solution visualised in Paraview with an overlaid picture of the
Ocellaris logo. The background color shows the distribution of the
velocity magnitude, and the white lines show the stream lines of the
converged steady state solution.

TODO: explain some details of the input file?

Dam break

TODO: document this and include a figure

Taylor-Green

TODO: document this and include a figure

Wave Tank

TODO: document this and include a figure

Ocellaris Inspector

Ocellaris contains a custom postprocessor, the Ocellaris Inspector, which can
plot time step reports from log and restart files. The inspector can also show
the input and log files inside each restart file and has a number of more
specialized plotting functionality for 2D iso-lines and quasi-static
analyses.

More advanced 2D and all 3D visualization is delegated to tools like Paraview [https://www.paraview.org],
but for plotting the Courant number or total energy as a function of time step
for a finished simulation (log/restart file) or running simulation (log file)
the inspector can be quite handy. Using Control+R to reload the results
gives near instant monitoring of a running Ocellaris simulation.

Contents

	Getting started

	Opening files

	Scripting

Getting started

To run the Inspector you need to have a working installation of wxPython [https://wxpython.org]
version 4.0 or later (tested with 4.0.0 beta 2). When this is installed you
can start the Ocellaris Inspector by running:

python3 -m ocellaris_post.inspector myfile.log otherfile_endpoint_001.h5

This should show plots comparing the selected simulations.

WxPython is not installed in Docker and Singularity containers for size
reasons, but the whole ocellaris_post Python package is written to not
depend on FEniCS or Ocellaris, so you can quite easily run it in a more
“standard” Python environment. The Ocellaris inspector currently supports
both Python 2 and Python 3 so you only need to install wxPython, numpy, h5py,
PyYAML and matplotlib in your favourite Python install (or venv) to use the
Ocellaris Inspector. Most of these are probably installed allready in a
standard scientific Python installation.

[image: The Ocellaris Inspector GUI - plotting Co = Courant number]
The Ocellaris Inspector showing the Courant number of a running simulation

Opening files

You can specify files on the command line, click the “Open” button in the
“Setup” tab, drag and drop files into the program or use Control+O to
bring up a file opening dialog.

You can also load log files from simulations running on a HPC cluster system
by clicking the “Open running simulation” button in the “Setup” tab and giving
the host name and mount directories for the HPC cluster login node. You must
have enabled password-less SSH login to the head node, otherwise the cluster
connector will not work

[image: The cluster connection GUI]
The cluster connection GUI

You must also have mounted the cluster home directory somewhere on the local
machine; via sshfs or other means. When the connection is established you
can select which simulations you would like to open and press the “Load” button.

Only SLURM clusters are currently supported, but just a tiny bit of glue code is
necessary to implement support for other queue systems; please submit a patch or
get in touch if you need such support. Loading running simulations from the
current machine should also be easy and may be implemented in the future.

Scripting

For publication quality plots it is probaly best to use the ocellaris_post
package from your own Python scripts instead of using Ocellaris Inspector.
Script examples can be found in the scripts/ directory, though some of these
predate the ocellaris_post package. All results that are plotted in the
Inspector can be recreated by use of the ocellaris_post.Results
class:

Utility scripts

Ocellaris comes with utility scripts for automating common tasks in the
scripts directory.

Contents

	orun.py - Run Ocellaris on a HPC with automatic restarts

	merge_xdmf_timeseries.py - join multiple XDMF files into a single time history

	Others

orun.py - Run Ocellaris on a HPC with automatic restarts

For running Ocellaris on a cluster. MPI solvers can be fragile and sometimes
will hang for no apparent reason. If you run your simulations with orun.py and
make sure to write restart files every once in a while then orun will monitor
your output and kill and restart the simulation if it appears to have stopped.

An example SLURM job script using orun.py:

#!/bin/bash

Metadata:
#SBATCH --job-name=Ocellaris+FEniCS
#SBATCH --account=XXXXXXXXX
#SBATCH --output="slurm-%j.STDOUT"
#SBATCH --error="slurm-%j.STDERR"

Resource requests:
#SBATCH --time=3-00:00:00
#SBATCH --mem-per-cpu=3936
#SBATCH --ntasks-per-node=16 --nodes=2

Abel cluster specific
set -o errexit
source /cluster/bin/jobsetup
module purge
module add ${HOME}/modules/fenics-2018-07-16

Add Ocellaris to Python's search path
odir=${HOME}/src/Ocellaris
export PYTHONPATH=${odir}:$PYTHONPATH

Run Ocellaris
python3 ${odir}/scripts/orun.py ocellaris.inp --silent --timeout 1600

This requires some output settings in the Ocellaris input files:

output:
 # ... normal output settings

 # Restart friendly output settings
 stdout_enabled: yes
 flush_interval: 60 # (seconds, default 5)
 hdf5_write_interval: 50 # adjust to write every ten minutes or so
 hdf5_only_store_latest: yes # to save disk space

The orun.py script has more options, but when running under SLURM some of
them are not needed as they are picked up from the environment.

$ python3 orun.py --help
usage: orun [-h] [--ncpus NCPU] [--interval INTERVAL] [--pystuck]
 [--timeout TIMEOUT] [--restarts RESTARTS] [--silent]
 [--mpirun MPIRUN]
 input_file

Start an Ocellaris simulation with a "babysitter" that watches the stdout
stream and kills the simulation if no output is produced over an extended
period of time (default 10 minutes / 600 seconds). If the simulation writes
restart files at regular intervals then the babysitter can be made to restart
the simulation from the latest restart file a number of times (default 2
restarts of the same file). The reason for this babysitter is that there are
difficult to debug problems (probably in PETSc) that causes the simulation to
be stuck at 100% CPU utilisation. No backtrace is available on Ctrl+C / SIGINT
which would be the case if there was a infinite loop in the Python code, so
most likely the error exists in a C extension.

positional arguments:
input_file Name of inputfile on YAML format

optional arguments:
-h, --help show this help message and exit
--ncpus NCPU, -n NCPU
 Number of MPI processes. Not used when running under
 SLURM where SLURM_NTASKS is used instead (default: 1)
--interval INTERVAL, -i INTERVAL
 Output interval in seconds (default: 10)
--pystuck Enable pystuck on the root MPI rank. Most likely will
 not work since most hangs happen in C++ code (default:
 False)
--timeout TIMEOUT, -t TIMEOUT
 Output timeout in seconds. After this period of
 inactivity the simulation is killed (default: 600)
--restarts RESTARTS, -r RESTARTS
 Number of restarts of the same file (input or restart
 file). Every time the simulation writes a new
 savepoint the counter is reset (default: 2)
--silent, -s Do not relay stdout from Ocellaris (default: False)
--mpirun MPIRUN The mpirun executable (default: mpirun)

You could argue that finding the root cause of any PETSc MPI hangs would be
better than this hack to work around the problem, but I do not have time to
debug problems that happens after 50 hours of running on 48 CPUs somewhere
deep inside PETSc when the same routine has been called with more or less
similar matrices many thousand times before in the simulation without any
problems. It would be different if the hang was consistent and happened
earlier … SORRY!

merge_xdmf_timeseries.py - join multiple XDMF files into a single time history

When postprocessing a simulation that has been restarted it can be
inconvenient in programs such as Paraview that the time steps are spread
out over a number of XDMF files. This script merges such XDMF files into
one XDMF (and one HDF5) file that contains all the time steps. If restart
overlap the latest version of a timestep is written since this will be the
one that was used in the further simulation

Example:

$ rm merged.*
$ python3 merge_xdmf_timeseries.py mysim.xdmf mysim_restarted_*.xdmf merged.xdmf

This will produce merged.xdmf and merged.h5.

The script will not work for aribtrary XDMF files! It probably only works on
XDMF files produced by Ocellaris (and probably FEniCS DOLFIN with the same
XDMF configuration settings).

Others

These are not used much by me (Tormod Landet) and may hence have bitrotted and
could need some work to function as intended. Think of them more as examples to
start from if you need something similar, and not finished solutions.

	plot_reports.py - plot Ocellaris time step reports with matplotlib,
optionally save a HTML report with the plots embedded in the file.

	plot_memory_usage.py - plot the memory usage for an Ocellaris simulation
based on log file data. You must have specified output/show_memory_usage:
yes in the input file to have the MAX RSS memory information available

	restart2vtk.py - take one function from an Ocellaris restart h5 file
and export it as a true DG field to a *.vtk file. Currently only
implemented for scalar DG2 fields, should be easy to extend to other element
types. The binary VTK file writer may be buggy, the ASCII writer works.

	slice_to_numpy.py - read a restart file and extract a 2D slice of
velocities and pressures which is stored as a numpy array on disk. Assumes
that the simulation is 2D (ignores the z direction)

	Various plotting scripts - some use the newer ocellaris_post result
file readers, some are from earlier times and implement result file parsers
themselves (and should be updated).

Programmers guide

This documentation shows the API of the main classes and gives information
about scripting Ocellaris. You can also find help to understand the main
code base if you want to help further develop Ocellaris.

	Simulation classes

	Scripting and interactive console
	Scripting Ocellaris

	Interactive console

A brief introduction

The following is a description of what happens when the user starts Ocellaris
by running the following on the command line:

ocellaris INPUT_FILE

Ocellaris starts by running the main() function in the
ocellaris.__main__ module. This function will create an object of the
ocellaris.Simulation class. This simulation object will be central to
the execution of Ocellaris and it will be passed around to allmost all pieces
of the code. Everyone who wants to look at the input or access the calculated
solution must do this through the simulation class.

The main function will now read the input file given by the user on the command
line by running the ocellaris.simulation.Input.input.read_yaml() method.
The code will also set up logging / console output and print a banner unless
the user has set the log level so high that INFO messages will not be printed.
If a restart file is provided instead of an input file the main function will
reload data and input from that file.

Next the ocellaris.setup_simulation() ocellaris.run_simulation()
functions are called and then the ocellaris.__main__ module will take no
more part in the running of Ocellaris except for printing a goodbye message at
the end.

The main task of setting up and running the simulation is done in the
ocellaris.run module. This is where the ocellaris.run_simulation()
function is implemented along with several utility functions. The following
actions are performed here:

	Load the mesh

	Create function spaces

	Create boundary conditions

	Load physical constants

	Create the multiphase model (controls density and viscosity)

	Create probes which can report solution data to file and/or show interactive
plots during the simulation

	Populate the ocellaris.Simulation.data dictionary with the mesh,
function spaces, boundary contitions etc

	Create the solver

	Run the solver

	Report how long each part of the simulation took

A simplified replification of the above in a script would be:

from ocellaris import Simulation, run_simulation

sim = Simulation()
sim.input.read_yaml('template.inp')
setup_simulation(sim)
run_simulation(sim)

Read more about scripting in the scripting section

Simulation classes

The simulation classes holds the simulation data (velocity, pressure, function
spaces, mesh etc) and is also responsible for most utility functionality such
as plugins (hooks), logging, reporting, plotting and input file handling.

Scripting and interactive console

Scripting Ocellaris

There are two main ways of scripting Ocellaris:

	Generate input files by a script and run Ocellaris on these

	Use the Python programming interface

A brief example of the first would be something like this that runs Ocellaris
with two different time steps by producing input files and starting Ocellaris
as a command line application:

import yaml, subprocess

Load the template input file
with open('template.inp', 'rt') as inp:
 input_dict = yaml.load(inp)

for dt in [0.1, 0.05]:
 # Modify the input file
 prefix = 'test_dt_%.3f' % dt
 input_dict['time']['dt'] = dt
 input_dict['output']['prefix'] = prefix

 # Save the modified input file
 new_inp_file = prefix + '.inp'
 with open(new_inp_file, 'wt') as out:
 yaml.dump(input_dict, out)

 # Run Ocellaris with the modified input file
 p = subprocess.Popen(['python', '-m', 'ocellaris', new_inp_file],
 stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 stdout, stderr = p.communicate()

The same can be accomplished from a script which uses the Ocellaris Python API:

from ocellaris import Simulation, setup_simulation, run_simulation

for dt in [0.1, 0.05]:
 prefix = 'test_dt_%.3f' % dt

 # Create a simulation object, load an input file and modify the time step
 sim = Simulation()
 sim.input.read_yaml('template.inp')
 sim.input.set_value('time/dt', dt)
 sim.input.set_value('output/prefix', prefix)

 # Run Ocellaris
 setup_simulation(sim)
 run_simulation(sim)

For more information about what you can do with the simulation object, see the
Simulation classes documentation.

Examples of this can be seen in the convergence scripts which can be found in
the cases/ subdirectory of the Ocellaris repository.

Interactive console

At the end of each time step Ocellaris will optionally open an interactive
console so that you can inspect the internal state of the simulation. To
access this pres d then Enter (“d” for debug). At the end of the
next time step the console should open and you will have full access to the
internal variables. The variables are listed so that you can get a head start.

Most of the variables are described in the Simulation classes documentation
under the ocellaris.Simulation.data attribute.

If you press Ctrl+d inside the interactive console Ocellaris will
continue running the time loop. If you type exit() or quit() you will
stop Ocellaris and return to the command line immediately.

It is also possible to specify that the console should open at the end of the
simulation. If you want this put the following on the input file:

console_at_end: true

This can be very useful for ad-hoc postprocessing of the simulation results.

License of Ocellaris

Ocellaris is licensed under the Apache License, Version 2.0 (the
“License”); you may not use this work except in compliance with the
License. A copy of the License is attached below.

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

The License

Attached below is the Apache License, Version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/ocellaris_outlined_500.png

_static/ajax-loader.gif

_images/inspector_courant.png
Ocellaris Report Inspector

Courant number

—
010
g
8 005
0.00
0 10 20 30 0
time [s]

A€ PQE

Report: | Co

plottitle: | Courant number

Labelx: [time[s] Xas logaxis
Labely: [co[]] O vaslogaxis
» Details

Setup Files | Timestep reports | Stairs Surfaces

nav.xhtml

 Table of Contents

 		
 Ocellaris

 		
 User guide

 		
 Installing Ocellaris

 		
 Installation using containers

 		
 Installation using pip

 		
 Running Ocellaris

 		
 Running a simulation

 		
 Restart files

 		
 Graphical user interface

 		
 Controlling a running simulation

 		
 Ocellaris input file description

 		
 File format

 		
 Header

 		
 User constants and code

 		
 Physical properties

 		
 Mesh

 		
 Boundary conditions

 		
 Initial conditions

 		
 Timestepping

 		
 Output control

 		
 Linear solvers

 		
 Navier-Stokes solvers

 		
 Multi phase solver

 		
 Convection

 		
 Probes

 		
 User code / hooks

 		
 Demos

 		
 Flow around a clownfish

 		
 Dam break

 		
 Taylor-Green

 		
 Wave Tank

 		
 Ocellaris Inspector

 		
 Getting started

 		
 Opening files

 		
 Scripting

 		
 Utility scripts

 		
 orun.py - Run Ocellaris on a HPC with automatic restarts

 		
 merge_xdmf_timeseries.py - join multiple XDMF files into a single time history

 		
 Others

 		
 Programmers guide

 		
 Simulation classes

 		
 Scripting and interactive console

 		
 Scripting Ocellaris

 		
 Interactive console

 		
 A brief introduction

 		
 License of Ocellaris

 		
 The License

_images/cluster_connector.png
Cluster Connector

Cluster type SLURM -

Host name [abet)

Either "user@host” or "host" depending on your setup.
YouMUST have password-less SSH login worki

Verify connection Test
Clusterhome [/cluster/home/tormodla
Cluster user [tormodla

Local mount ~/abel

The local directory where you have mounted the cluster
home directory. E.g., "~/mymount".
You can mount using "sshfs CLUSTER_HOST: ~/LOCAL_DIR"

Get runningjobs | Connect |

/home/tormod/abel/OcellarisCases/meshF _test001/ocellaris_out.log

Load

_images/flow_around_ocellaris.png

_static/up-pressed.png

_static/up.png

