

Ocellaris

Ocellaris is a work in progress to make a mass conserving DG FEM solver for sharp interface
multiphase free surface flows. The current goal of the project is to simulate water entry and
exit of objects in ocean waves with accurate capturing of the force on the object and the
behaviour of the free surface.

Ocellaris is implemented in Python and C++ with FEniCS [https://fenicsproject.org/] as the backend for numerics, mesh and
finite element calculations.

Quick start

	Ocellaris

	Installation and running

	First steps

	Documentation

	Development

	Copyright and license

Ocellaris is named after the Amphiprion Ocellaris [https://en.wikipedia.org/wiki/Ocellaris_clownfish]
clownfish and is written as part of a PhD project at the University of Oslo.

[image: Picture of Ocellaris]
About this image [https://trlandet.bitbucket.io/ocellaris/logo.html]

Installation and running

Ocellaris requires a full installation of FEniCS [https://fenicsproject.org/] with the PETSc linear algebra backend. You can
install the dependecies yourself (you need at least dolfin, h5py, matplotlib and PyYAML), but the
easiest way by far is to use a preconfigured Singularity or Docker container. More information
on these and installation in general can be found in the user guide [https://trlandet.bitbucket.io/ocellaris/user_guide/user_guide.html].

When Ocellaris is installed you can run the solver with an Ocellaris input file:

ocellaris INPUTFILE.INP

Example input files can be found in the demos/ sub-directory of the Ocellaris source code and
a description of the Ocellaris input file format is given in the user guide [https://trlandet.bitbucket.io/ocellaris/user_guide/user_guide.html].

First steps

To test the code there are some demo input files in the demos/ directory. Complete input files along
with driver scripts are provided for several of the standard benchmark cases like Kovasznay flow and the
Taylor-Green vortex in the cases/ directory. More information can be found in the documentation which
also contains a description of the input file format.

Please feel free to test Ocellaris, but please keep in mind:

	Ocellaris is in a state of constant development

	Ocellaris supports Python 3 only

	FEniCS DOLFIN with pybind11 Python3 wrappers is required (master version, still unreleased as of
November 2017)

	This is a research project, do not expect results to be correct without proper validation!

Documentation

	User guide
	Installing Ocellaris

	Running Ocellaris

	Ocellaris input file format

	Programmers guide
	Simulation classes

	Boundary conditions

	The solver

	Scripting and interactive console

	A brief introduction

	License of Ocellaris
	The License

Development

Ocellaris is developed in Python and C++ on Bitbucket [https://bitbucket.org/trlandet/ocellaris] by use
of the Git version control system. If you are reading this on github, please be aware that you are seeing a
mirror that could potentially be months out of date. The github mirror is only updated sporadically—to trigger
new Singularity Hub container builds. All pull requests and issues should go to the Bitbucket repository.

Ocellaris is automatically tested on CircleCI [https://circleci.com/bb/trlandet/ocellaris/tree/master]
and the current CI build status is [image: circleci_status] [https://circleci.com/bb/trlandet/ocellaris/tree/master].

Copyright and license

Ocellaris is copyright Tormod Landet, 2015-2017. Ocellaris is licensed under the Apache 2.0 license, a
permissive free software license compatible with version 3 of the GNU GPL. See License of Ocellaris [https://trlandet.bitbucket.io/ocellaris/license.html] for
the details.

User guide

The Ocellaris user guide gives an introduction to installing, configuring and
running Ocellaris.

There are many possible simulations that can be correctly set up, but Ocellaris
will fail to give the physically correct answer. You must validate the code and
the configuration (input file) for your own purposes before trusting the results.

	Installing Ocellaris
	Installation using containers

	Installation using pip

	Running Ocellaris
	Running a simulation

	Restart files

	Graphical user interface
	Custom postprocessor

	Ocellaris input file format
	Gotchas

	The example simulation

	Header

	Physical properties

	Mesh

	Boundary conditions
	Available options

	Selecting regions by code

	Selecting regions from XML input

	Coded boundary conditions

	Initial conditions

	Timestepping

	Output control

	The solver

	Multi phase solver

	Convection

	Probes

	User code / hooks

Installing Ocellaris

Ocellaris is a Python package and it contains no modules that must be compiled
before running. Some internal modules will be compiled on the first program
startup by use of the FEniCS DOLFIN JIT compiler. This can take some time.
Subsequent runs of Ocellaris will use the precompiled modules.

Contents

	Installation using containers

	Installation using pip

Installation using containers

The easiest way to install Ocellaris is by use of a Docker [https://www.docker.com/] or Singularity [http://singularity.lbl.gov/]
container. Ocellaris is CI [https://circleci.com/bb/trlandet/ocellaris/tree/master] tested using the Docker container described in
the containers/ subdirectory of the Ocellaris source code. The test
procedures (Linux shell commands) describe the exact commands used to
install and run Ocellaris tests and they are a good place to start, see the
config.yml [https://bitbucket.org/trlandet/ocellaris/src/master/.circleci/config.yml] file in the .circleci/ subdirectory of the Ocellaris source
code for the details.

Ocellaris is developed (mostly) using Singularity [http://singularity.lbl.gov/] containers. You can either
convert the Docker CI container or use the one described in the Singularity
file inside the containers/ subdirectory of the Ocellaris source code.
To create a Singularity image from the file “Singularity” run:

cd path/to/Ocellaris_source
cd containers
singularity build ocellaris.img Singularity

You can now run Ocellaris from inside the newly created Singularity container:

singularity run ocellaris.img INPUTFILE.INP

The Singularity image is based on the Docker image that is used by the Ocellaris
automated testing environment, see config.yml [https://bitbucket.org/trlandet/ocellaris/src/master/.circleci/config.yml] for up to date details about
which Docker image is used. You can use this Docker image to run Ocellaris as
well, but you will then have to install Ocellaris yourself inside the container
using the pip3 command shown below.

Installation using pip

Before running Ocellaris you must ensure that the ocellaris Python package
is on the Python search path. This is most easily done by running:

pip3 install .

in the root directory of the source code. If the package is installed via
pip then the ocellaris command will be available, otherwise you can
add the source directory to the Python module search path and add an alias:

alias ocellaris="python3 -m ocellaris"

Ocellaris depends on an installation of FEniCS, compiled with support for
PETSc, and some additional Python packages like PyYAML and h5py. Ocellaris will
inform you about any missing packages when you run it for the first time.

Eventually Ocellaris will be available on PYPI for installation through the
pip, command but currently you must download the package manually from
the Ocellaris Bitbucket git repository [https://bitbucket.org/trlandet/ocellaris/src] before you can install it. You
can get the source code by:

git clone https://bitbucket.org/trlandet/ocellaris.git
cd ocellaris
pip3 install .

FEniCS, which Ocellaris is built on top of, is not currently pip-installable
(Nov 2017) so it can be slightly hard to install all prerequisites. The
recommended way which should always work is to use the same installation as
on the automated test system—running in a container—or using the same
installation procedure as used in the containers, see the container section
above for more info.

Running Ocellaris

Contents

	Running a simulation

	Restart files

	Graphical user interface

	Custom postprocessor

Running a simulation

Ocellaris is typically run from the command line with the name of an input file
as the first argument:

ocellaris taylor-green.inp

You can optionally override parameters given on the input file:

ocellaris taylor-green.inp \
 --set-input time/dt=0.1 \
 --set-input 'solver/velocity_function_space="CG"'

You can see a summary of the command line options by running:

ocellaris --help

Ocellaris will normally create a log file with the information that is also
shown on screen. This will contain a listing of the input after modification
by the --set-input command line flag so that you can be sure to know
exactly what you did run when you look back on an old simulation.

Restart files

Ocellaris will by default save a restart file at the end of each simulation,
named something like SIMNAME_endpoint_00000XYZ.h5. You can also configure
Ocellaris to write restart files at given intervals or supply a user code that
writes a restart file when given criteria are met. The restart file contains
the input file that was used along with a very detailed log and all active
fields (velocity, pressure, density etc).

If you need to restart from the end of a simulation, for example to run a bit
further in time in case you set tmax a bit too short you can easily do this
by:

ocellaris RESTART_FILE.h5 --set-input time/tmax=30.0

You will probably want to use --set-input since it is inconvenient (but
certainly doable if you really want) to change the input description inside
the restart file.

If you want you can inspect the contents of a restart file, which is stored on
HDF5 format, by use of the graphical program HDFView [https://www.hdfgroup.org/downloads/hdfview/], or command line
applications like h5ls and friends, see HDF5 [https://www.hdfgroup.org] for more info. This is a
relatively easy way to find out the exact input file that was used, read the
detailed log etc. There are no known programs that can plot the fields inside a
FEniCS DOLFIN HDF5 restart file (which is what Ocellaris uses).

Graphical user interface

Preprocessing:
There exist a lot of programs to generate meshes that can be used with
Ocellaris. A Python program, meshio-convert [https://github.com/nschloe/meshio], can convert many formats
to FEniCS/DOLFIN/Ocellaris compatible XML format. A rather good free graphical
user interface for mesh generation is gmsh [http://gmsh.info]. The latest version (>3) has
CAD capabilities and is used for several of the Ocellaris demos.

2D/3D field postprocessing:
Ocellaris can save results in XDMF [http://www.xdmf.org] format. There are several programs that
can postprocess such files. Paraview [https://www.paraview.org] is a good option.

Custom postprocessor

Ocellaris contains a custom postprocessor, the Ocellaris Inspector, which can
plot time step reports from *.log and restart files. The inspector can also
show the input and log files inside each restart file and 2D iso-line contours
like the location of the free surface in a 2D simulation.

More advanced 2D and all 3D visualization is delegated to tools like Paraview [https://www.paraview.org],
but for plotting the Courant number or total energy as a function of time step
for a finished simulation (log/restart file) or running simulation (log file)
the inspector can be quite handy. Using Control-R to reload the results
gives near instant monitoring of a running Ocellaris simulation.

To run the Inspector you need to have a working installation of wxPython [https://wxpython.org/]
version 4.0 or later (tested with 4.0.0 beta 2). When this is installed you
can start the Ocellaris Inspector by running:

python3 -m ocellaris_post.inspector myfile.log otherfile_endpoint_001.h5

This should show plots comparing the selected simulations.

WxPython is not installed in Docker and Singularity containers for size
reasons, but the whole ocellaris_post Python package is written to not
depend on FEniCS or Ocellaris, so you can quite easily run it in a more
“standard” Python environment. The Ocellaris inspector currently supports
both Python 2 and Python 3 so you only need to install wxPython, numpy, h5py,
PyYAML and matplotlib in your favourite Python install (or venv) to use the
Ocellaris Inspector. Most of these are probably installed allready in a
standard scientific Python installation.

For publication quality plots it is probaly best to use the ocellaris_post
package from your own Python scripts instead of using Ocellaris Inspector.
Script examples can be found in the scripts/ directory, though some of these
predate the ocellaris_post package. All results that are plotted in the
Inspector can be recreated by use of the ocellaris_post.Results
class:

Ocellaris input file format

To run Ocellaris you must create an input file. The Ocellaris input file is on
YAML format and allows you to control most of the solution process. The
different sections of the input file are described below.

Note that since JSON is a valid subset of YAML you can also specify the input
file in JSON format. JSON has no simple support for multi-line strings and
comments, so YAML is the format used by the Ocellaris demos and also in the
descriptions below.

Contents

	Gotchas

	The example simulation

	Header

	Physical properties

	Mesh

	Boundary conditions

	Available options

	Selecting regions by code

	Selecting regions from XML input

	Coded boundary conditions

	Initial conditions

	Timestepping

	Output control

	The solver

	Multi phase solver

	Convection

	Probes

	User code / hooks

Gotchas

Some errors that are easy to make when writing a YAML input file:

	Boleans in YAML are written all lower case (true, false) unlike
in Python where the first letter is upper case (True, False). It
can be easier to use the alternatives on or off so this
confusion is avoided.

	The value 5e-3 is a string in YAML while 5.0e-3 is a float.

	Indentation is significant, just like in Python

The example simulation

This document describes how to make an input file for Ocellaris. The example
simulation that is created through the tutorial is the well known lid driven
cavity flow problem in 2D. An input file for this simulation is used in most
examples. Input options not used for a 2D lid driven cavity simulation are
also mentioned and (mostly) complete lists of options are given in tables.

[image: ../_images/lid_driven_cavity.png]
Lid driven cavity

For the example simulation the domain is a 2D unit square with no-slip
conditions on three walls and a constant horisontal velocity equal to 1.0 on
the top. The Reynold’s number is given by the kinematic viscosity. We will use
nu = 0.001 which gives a Reynold’s number of 1000.

Header

The input file must start with the following header:

ocellaris:
 type: input
 version: 1.0

You can optionally specify some metadata if you feel like it. This is not
required, but can be useful for explainations and later references. We are
making an input file for the lid driven cavity test case, so we write a
short description of what we will be calculating.

metadata:
 author: Tormod Landet
 date: 2015-02-13
 description: |
 Free form text description of the input
 It can be quite usefull to have some text to
 describe the purpose of the simulation etc for
 future reference

Here you also see the syntax for multi-line strings in YAML.

Physical properties

You will need to specify some physical constants.

physical_properties:
 g: [0, 0, 0]
 nu0: 0.001
 rho0: 1.0

The postfix 0 is there to allow for more than one fluid in one simulation.
The in a two fluid flow simulation the second fluid will use postfix 1.

	key

	Default value

	Description

	physical_properties/g

	[0]*ndim

	The acceleration of gravity. Use [0, -9.81] in 2D and [0, 0, -9.81] in 3D for “standard” gravity

	physical_properties/nuX

	required input

	The kinematic viscosity of fluid X

	physical_properties/rhoX

	1.0

	The density of fluid X (required for multi-phase calculations, optional for single phase)

Mesh

You need to load or create a mesh. Currently you can create 2D rectangle meshes
or load a mesh (2D or 3D) from a FEniCS mesh on xml format. For our test case
we create a default size square 2D domain with 64 elements along each side.

mesh:
 type: Rectangle
 Nx: 64
 Ny: 64

The following parameters can be specfied when creating a rectangular mesh:

	key

	Default value

	Description

	mesh/type

	required input

	What type of mesh to create/load. Rectangle or XML

	mesh/Nx

	required input

	The number of elements in the x-direction

	mesh/Ny

	required input

	The number of elements in the y-direction

	mesh/startx

	0.0

	The position of the left hand side of the mesh

	mesh/endx

	1.0

	The position of the right hand side of the mesh

	mesh/starty

	0.0

	The position of the bottom of the mesh

	mesh/endy

	1.0

	The position of the top of the mesh

If you select to load the mesh from a FEniCS XML mesh file you can must specify the following:

	key

	Default value

	Description

	mesh/mesh_file

	required input

	Name of the XML file containing the mesh

	mesh/facet_region_file

	None (not required)

	Name of the XML file containing boundary region markers. You can use this to prescribe boundary conditions on regions created in the mesh tool (e.g Gmsh physical lines)

Ocellaris will look for the xml files first as absolute paths, then as paths
relative to the current working directory and last as paths relative to the
directory of the input file. If it cannot find the file in any of these
places you will get an error message and Ocellaris will quit.

A sample mesh xml file and facet marker file is included in the demo/files
directory. The mesh ocellaris_mesh.xml.gz and the facet regions
ocellaris_facet_regions.xml.gz. You can load these files without unzipping
them. The flow around Ocellaris demo shows how it is done.

Boundary conditions

You need a list of boundary conditions for your problem. For each region of the
boundary you first need to tell Ocellaris how to find this region and then the
boundary conditions to apply to each of the variables (velocity and pressure for
a single phase simulation).

You can select constant Dirichlet boundary conditions (ConstantValue) or
constant Neumann conditions (ConstantGradient). You can also have coded
boundary conditions where you give a source code snippet that is executed to
calculate the boundary condition value, either in Python (type CodedValue)
or in C++ (type CppCodedValue).

How to mark different areas of the boundary is explained below. For the lid
driven cavity the boundary conditions are as follows:

boundary_conditions:
- name: walls
 selector: code
 inside_code: on_boundary
 u:
 type: ConstantValue
 value: [0, 0]
 p:
 type: ConstantGradient
 value: 0
- name: lid
 selector: code
 inside_code: on_boundary and x[1] >= 1.0 - 1e-8
 u:
 type: ConstantValue
 value: [1, 0]
 p:
 type: ConstantGradient
 value: 0

Note that the - in front of the name: ... lines marks the start of a
list item. The boundary conditions should be given as a list of boundary
regions. Each region specifies boundary conditions for all variables on the
selected boundary.

The boundary conditions for the velocity components can also be broken up and
written per component. This allows you to apply different boundary conditions
types for each component. In this case it can be written (for the lid):

u0:
 type: ConstantValue
 value: 1
u1:
 type: ConstantValue
 value: 0

Available options

	key

	Default value

	Description

	boundary_conditions/[i]/name

	required input

	The name of the region. For more helpful error messages etc.

	boundary_conditions/[i]/selector

	required input

	How the region is selected. Supported methods are code and mesh_facet_region.

	boundary_conditions/[i]/inside_code

	required when the selector is code

	Python code to mark facets as inside the region or not

	boundary_conditions/[i]/mesh_facet_regions

	required when the selector is mesh_facet_region

	List of identificator numbers of the facet regions from the mesh. See below.

	boundary_conditions/[i]/map_code

	required when using periodic boundary conditions

	Code for mappinc coordinates when using periodic boundary conditions. See below.

	boundary_conditions/[i]/var_name

	
	Boundary conditions for var_name. See below.

The boundary condition for each variable is given in a sub-dictionary that has
the following options:

	key

	Default value

	Description

	../var_name/type

	required input

	What type of BC to apply. Currently the following are available: ConstantValue, ConstantGradient, CodedValue and CppCodedValue

	../var_name/value

	required when using ConstantXxxxx

	The value to apply. Either a scalar or a list of scalars.

	../var_name/code

	required when using CodedXxxx

	Python code to calculate the value. Must be a multiline string that assigns to the value[i] variable (see below)

	../var_name/cpp_code

	required when using CppCodedXxxx

	C++ expression to calculate the value. Must evaluate to the requested value.

Selecting regions by code

You can select regions of the boundary by code in the same format as in FEniCS.
Ocellaris will run the Python code provided in the inside_code input key in
a statement equivalent to:

def boundary(x, on_boundary):
 return YOUR_REGION_CODE

if you give a single line expression, or

def boundary(x, on_boundary):
 YOUR_REGION_CODE
 return inside

if you give a multi line expression. In this case you need to assign a boolean
value to the name inside.

How the inside_code works is that any facet where your code evaluates to
True will be marked. As you can se above it is possible to mark everything
as is done for the walls and then overwrite this mark for parts of the boundary
as is done for the lid. The above will have walls everywhere below y=1 and lid
on y≥1. The FEniCS / dolfin syntax is used so x[0] is the x-component and
x[1] is the y-component.

Selecting regions from XML input

If you load the mesh along with a facet region file you can select boundary
regions by referencing their number given in the facet region file. You can
select one or more mesh facet region per Ocellaris boundary region. In the
demo calculating flow around the 2D outline of an Ocellaris clownfish the
selection of the top and bottom wall is done as follows. Here 2 and 4 are the
numbers given to the top and bottom wall respectively in the Gmsh preprocessor
using Physical Line(2) = {...}; Physical Line(4) = {...};:

boundary_conditions:
- name: Top and bottom
 selector: mesh_facet_region
 mesh_facet_regions: [2, 4]
 u1:
 type: ConstantValue
 value: 0
 p:
 type: ConstantGradient
 value: 0

The above code applies a free-slip boundary condition on these two horisontal
walls. No boundary condition is applied in the tangential, u0, direction.
Here it was necessary to split the velocity boundary condition into per
component boundary conditions.

Coded boundary conditions

An example of coded boundary conditions can be seen in the the following which
applies the analytical Taylor-Green vortex solution as Dirichlet conditions:

boundary_conditions:
- name: walls
 selector: code
 inside_code: on_boundary
 u:
 type: CodedValue
 code:
 - value[0] = -sin(pi*x[1]) * cos(pi*x[0]) * exp(-2*pi*pi*nu*t)
 - value[0] = sin(pi*x[0]) * cos(pi*x[1]) * exp(-2*pi*pi*nu*t)
 p:
 type: CodedValue
 code: value[0] = -(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4.*pi*pi*nu*t)/4

Notice that there is a list of two code blocks for the velocity. Both are
evaluated as scalar fields and must assign to the zeroth component of the
value[] array that is provided by FEniCS in order to set the Dirichlet
value at the boundary.

Boundary conditions can also be written in C++. If you write the boundary
conditions in C++ instead of Python it will normally be significantly faster.

The same example as above would be:

boundary_conditions:
- name: walls
 selector: code
 inside_code: on_boundary
 u:
 type: CppCodedValue
 cpp_code:
 - -sin(pi*x[1]) * cos(pi*x[0]) * exp(-2*pi*pi*nu*t)
 - sin(pi*x[0]) * cos(pi*x[1]) * exp(-2*pi*pi*nu*t)
 p:
 type: CppCodedValue
 cpp_code: -(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4.*pi*pi*nu*t)/4

Note that there is no assignment to the value[] array. All math
functions from <cmath> are available as well as scalars like the time “t”,
the timestep “dt”, time index “it” and number of geometrical dimensions “ndim”.
For single phase simulations “nu” and “rho” are also available.

Initial conditions

In the lid driven cavity test case both the velocity and the pressure fields
start from zero, so no initial values need to be given. The following is an
example of how to specify initial values for the Taylor-Green vortex on a 2D
square with side lengths equal to 2.0:

initial_conditions:
 up0:
 cpp_code: -sin(pi*x[1])*cos(pi*x[0])*exp(-2*pi*pi*nu*t)
 up1:
 cpp_code: sin(pi*x[0])*cos(pi*x[1])*exp(-2*pi*pi*nu*t)
 p:
 cpp_code: -(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4*pi*pi*nu*t)/4

	key

	Default value

	Description

	initial_conditions/var_name/cpp_code

	required input

	C++ code that gives the value of the field at each point. Variables rho, nu and t are available

Timestepping

This section sets the end time and time step. Currently only fixed time step is
available, though the time step can be altered in user coding at the expense of
slight errors in the treatment of the convecting velocity at the two time steps
following the change in time step:

time:
 dt: 0.01
 tmax: 60.0

Example user code that changes the time step. See details under hooks below:

hooks:
 pre_timestep:
 - name: decrease time step
 code: |
 if t > 10:
 simulation.input['time']['dt'] = 0.005

Output control

All the following parameters have sensible defaults and can be left out. The
output prefix can be useful to control in which directory the output files end
up. The final file name of all output files will be
output_prefix + file name.

output:
 prefix: lid_driven_cavity_flow
 log_name: .log
 dolfin_log_level: warning
 ocellaris_log_level: info

	key

	Default value

	Description

	…

	required input

	FIXME: finish this table

The solver

All the following parameters have sensible defaults. They all control the
solution process in one way or the other. See the FEniCS documentation for the
available selection of solvers and preconditioners.

The inner iterations will run maximum num_inner_iter times, but will exit
early if the \(L^\infty\) error of the difference between the predicted and
corrected velocity field is less than a given value allowable_error_inner.

solver:
 type: IPCS
 num_inner_iter: 20
 allowable_error_inner: 5.0e-3
 polynomial_degree_pressure: 1
 polynomial_degree_velocity: 2
 function_space_pressure: DG
 function_space_velocity: DG
 timestepping_method: BDF

	key

	Default value

	Description

	…

	required input

	FIXME: finish this table

Multi phase solver

If you are creating a two fluid simulation you will have to specify some
parameters of the multi-phase solver. For the lid driven cavity we can leave
the multi phase solver specification out of the input file. The default value
of this section is:

multiphase_solver:
 type: SinglePhase

When using the multi phase VOF solver by specifying type: BlendedAlgebraicVOF
the following parameters can be specified:

	key

	Default value

	Description

	multiphase_solver/function_space_colour

	DG

	CG for continuous Galerkin, DG for discontinuous Galerkin

	multiphase_solver/polynomial_degree_colour

	0

	The degree of the approximating polynomials

In addition you will have to specify a convection scheme for the VOF colour
function in order to keep the free surface sharp. For specifying the convection
scheme, see below.

Convection

Convecting fluxes have to be specified for all DG fields that are operated on
by a convection operator.

convection:
 u:
 convection_scheme: Upwind

	key

	Default value

	Description

	…

	required input

	FIXME: finish this table

FIXME: describe HRIC/ CICSAM etc

Probes

Line probes can be added to sample the solution at each time step or at regular
intervals. Ocellaris can also show a plot of the sampled probe values that it
will update while it is running so that you can visually inspect the solution.

probes:
- name: u-vel center
 type: LineProbe
 field: u0
 startpos: [0.5, 0]
 endpos: [0.5, 1]
 Npoints: 100
 file_name: _uprobe.txt
 show_interval: 1
 write_interval: 10
 target_name: Ghia et al
 target_abcissa: [1.0, 0.9766, 0.9688, 0.9609, 0.9531, 0.8516, 0.7344, 0.6172, 0.5,
 0.4531, 0.2813, 0.1719, 0.1016, 0.0703, 0.0625, 0.0547, 0.0]
 target_ordinate: [1, 0.65928, 0.57492, 0.51117, 0.46604, 0.33304, 0.18719, 0.05702, -0.0608,
 -0.10648, -0.27805, -0.38289, -0.2973, -0.2222, -0.20196, -0.18109, 0]

- name: v-vel center
 type: LineProbe
 field: u1
 startpos: [0, 0.5]
 endpos: [1, 0.5]
 Npoints: 100

 file_name: _vprobe.txt
 write_interval: 10

 target_abcissa: [1.0, 0.9688, 0.9609, 0.9531, 0.9453, 0.9063, 0.8594, 0.8047, 0.5,
 0.2344, 0.2266, 0.1563, 0.0938, 0.0781, 0.0703, 0.0625, 0.0]
 target_name: Ghia et al
 target_ordinate: [0, -0.21388, -0.27669, -0.33714, -0.39188, -0.5155, -0.42665, -0.31966,
 0.02526, 0.32235, 0.33075, 0.37095, 0.32627, 0.30353, 0.29012, 0.27485, 0.0]

	key

	Default value

	Description

	…

	required input

	FIXME: finish this table

User code / hooks

TODO: describe this. See example under timestepping above for now.

	key

	Default value

	Description

	…

	required input

	FIXME: finish this table

The example below shows that each hook gets it’s own dictionary hook_data
to store whatever it wants between calls. The example also shows how to read
the input file parameters in a hook that is defined in the same input file, and
how to perform output to file in a configurable manner:

- name: save colour function field
 enabled: yes
 code: |
 if not 'cf' in hook_data:
 prefix = simulation.input.get_value('output/prefix')
 hook_data['cf'] = File(prefix + '_c.pvd')
 if t > 1:
 hook_data['cf'] << (c, t)

Programmers guide

This documentation shows the API of the main classes and gives information
about scripting Ocellaris. You can also find help to understand the main
code base if you want to help further develop Ocellaris.

	Simulation classes

	Boundary conditions

	The solver

	Scripting and interactive console
	Scripting Ocellaris

	Interactive console

A brief introduction

The following is a description of what happens when the user starts Ocellaris
by running the following on the command line:

ocellaris INPUT_FILE

Ocellaris starts by running the main() function in the
ocellaris.__main__ module. This function will create an object of the
ocellaris.Simulation class. This simulation object will be central to
the execution of Ocellaris and it will be passed around to allmost all pieces
of the code. Everyone who wants to look at the input or access the calculated
solution must do this through the simulation class.

The main function will now read the input file given by the user on the command
line by running the ocellaris.simulation.Input.input.read_yaml() method.
The code will also set up logging / console output and print a banner unless
the user has set the log level so high that INFO messages will not be printed.
If a restart file is provided instead of an input file the main function will
reload data and input from that file.

Next the ocellaris.setup_simulation() ocellaris.run_simulation()
functions are called and then the ocellaris.__main__ module will take no
more part in the running of Ocellaris except for printing a goodbye message at
the end.

The main task of setting up and running the simulation is done in the
ocellaris.run module. This is where the ocellaris.run_simulation()
function is implemented along with several utility functions. The following
actions are performed here:

	Load the mesh

	Create function spaces

	Create boundary conditions

	Load physical constants

	Create the multiphase model (controls density and viscosity)

	Create probes which can report solution data to file and/or show interactive
plots during the simulation

	Populate the ocellaris.Simulation.data dictionary with the mesh,
function spaces, boundary contitions etc

	Create the solver

	Run the solver

	Report how long each part of the simulation took

A simplified replification of the above in a script would be:

from ocellaris import Simulation, run_simulation

sim = Simulation()
sim.input.read_yaml('template.inp')
setup_simulation(sim)
run_simulation(sim)

Read more about scripting in the scripting section

Simulation classes

The simulation classes holds the simulation data (velocity, pressure, function
spaces, mesh etc) and is also responsible for most utility functionality such
as plugins (hooks), logging, reporting, plotting and input file handling.

Boundary conditions

The boundary condition code will both identify regions of the boundary given by
the user in the input file and create boundary condition objects for each
function (velocity, pressure …) in this region.

The solver

The solver uses the simulation classes and runs a time loop to solve the time
dependent Navier-Stokes equations.

Scripting and interactive console

Scripting Ocellaris

There are two main ways of scripting Ocellaris:

	Generate input files by a script and run Ocellaris on these

	Use the Python programming interface

A brief example of the first would be something like this that runs Ocellaris
with two different time steps by producing input files and starting Ocellaris
as a command line application:

import yaml, subprocess

Load the template input file
with open('template.inp', 'rt') as inp:
 input_dict = yaml.load(inp)

for dt in [0.1, 0.05]:
 # Modify the input file
 prefix = 'test_dt_%.3f' % dt
 input_dict['time']['dt'] = dt
 input_dict['output']['prefix'] = prefix

 # Save the modified input file
 new_inp_file = prefix + '.inp'
 with open(new_inp_file, 'wt') as out:
 yaml.dump(input_dict, out)

 # Run Ocellaris with the modified input file
 p = subprocess.Popen(['python', '-m', 'ocellaris', new_inp_file],
 stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 stdout, stderr = p.communicate()

The same can be accomplished from a script which uses the Ocellaris Python API:

from ocellaris import Simulation, setup_simulation, run_simulation

for dt in [0.1, 0.05]:
 prefix = 'test_dt_%.3f' % dt

 # Create a simulation object, load an input file and modify the time step
 sim = Simulation()
 sim.input.read_yaml('template.inp')
 sim.input.set_value('time/dt', dt)
 sim.input.set_value('output/prefix', prefix)

 # Run Ocellaris
 setup_simulation(sim)
 run_simulation(sim)

For more information about what you can do with the simulation object, see the
Simulation classes documentation.

Examples of this can be seen in the convergence scripts which can be found in
the cases/ subdirectory of the Ocellaris repository.

Interactive console

At the end of each time step Ocellaris will optionally open an interactive
console so that you can inspect the internal state of the simulation. To
access this pres d then Enter (“d” for debug). At the end of the
next time step the console should open and you will have full access to the
internal variables. The variables are listed so that you can get a head start.

Most of the variables are described in the Simulation classes documentation
under the ocellaris.Simulation.data attribute.

If you press Ctrl+d inside the interactive console Ocellaris will
continue running the time loop. If you type exit() or quit() you will
stop Ocellaris and return to the command line immediately.

It is also possible to specify that the console should open at the end of the
simulation. If you want this put the following on the input file:

console_at_end: true

This can be very useful for ad-hoc postprocessing of the simulation results.

License of Ocellaris

Ocellaris is licensed under the Apache License, Version 2.0 (the
“License”); you may not use this work except in compliance with the
License. A copy of the License is attached below.

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

The License

Attached below is the Apache License, Version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

The Ocellaris logo

The Ocellaris logo is based on a picture of an Ocellaris clownfish [http://commons.wikimedia.org/wiki/File:Amphiprion_ocellaris_%28Clown_anemonefish%29_Nemo.jpg]
by Nick Hobgood from Wikipedia [http://en.wikipedia.org/wiki/Ocellaris_clownfish]
licensed under CC BY-SA [http://creativecommons.org/licenses/by-sa/3.0/deed.en].

The triangulation of the fish was made using an online image triangulation tool [http://snorpey.github.io/triangulation/] by Georg Fischer. The image was first
prepared in the GIMP image editor; the background was replaced with white and the
fish was blurred and defeatured to look better when triangulated. Small features
made the resulting triangulation quite noisy so this step was necessary to get a
good result. The resulting image was then processed through the online tool and
exported from the web site to SVG format.

The SVG file from the web site was post-processed in Python with ElementTree to
remove all white triangles and then edited in Inkscape to adjust the color and
shape of a few triangles. The final logo image was then exported to PNG format
from Inkscape.

The computational mesh

A computational mesh was made of the domain around the Ocellaris clownfish.
The PNG image file containing the logo was opened in the GIMP image editor
and the outline of the Ocellaris clownfish was selected and converted to a path.
This path was saved to SVG format in order to get the coordinates of the outline.
These coordinates were fed into Gmsh by generating a GEO file in Python and a
triangulation of the outside of the fish was created in Gmsh MSH format.

The image below has been created in Python. The triangulation around the fish
was read from the Gmsh MSH format output file and converted to a Matplotlib
triangulation. The logo image was read in by Matplotlib and superinposed on
a plot of the triangulation. This was the only hard step: to get the PNG and
the plot of the triangulated mesh to align. If you look closely you will see
that the mesh does not follow the PNG image perfectly. I think it is good enough
for an evening hack.

[image: Mesh with Ocellaris fish logo image superinposed]

Why?

Just for fun.

Both the triangulated look of the logo and the creation of the mesh for calculating
flow around the Ocellaris clownfish are references to the FEniCS logo and the flow
around a dolphin FEniCS demo that is included in the Dolfin FEniCS package.

Why this page?

This page is mainly here to satisfy the CC-BY-SA license of the original image:

Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

The logo image is hence under the CC-BY-SA license.

Index

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/ocellaris_mesh_521.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

_images/ocellaris_mesh_521.png

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Ocellaris

 		
 User guide

 		
 Installing Ocellaris

 		
 Installation using containers

 		
 Installation using pip

 		
 Running Ocellaris

 		
 Running a simulation

 		
 Restart files

 		
 Graphical user interface

 		
 Ocellaris input file format

 		
 Gotchas

 		
 The example simulation

 		
 Header

 		
 Physical properties

 		
 Mesh

 		
 Boundary conditions

 		
 Initial conditions

 		
 Timestepping

 		
 Output control

 		
 The solver

 		
 Multi phase solver

 		
 Convection

 		
 Probes

 		
 User code / hooks

 		
 Programmers guide

 		
 Simulation classes

 		
 Boundary conditions

 		
 The solver

 		
 Scripting and interactive console

 		
 Scripting Ocellaris

 		
 Interactive console

 		
 A brief introduction

 		
 License of Ocellaris

 		
 The License

_images/lid_driven_cavity.png
@

&=

/

_static/up.png

